Biomass Modeling in the ObjECTS Framework

Steven Smith

JGCRI – College Park, MD

Collaborators: A. Brenkert; R. Sands

April 2004

Renewable Energy Modeling Workshop

ssmith@pnl.gov

Pacific Northwest National Laboratory

The Joint Global Change Research Institute

Outline

This talk will describe biomass modeling at the Joint Global Change Research Institute (JGCRI)

- The O^{bj}ECTS Framework
 O^{bj}ECTS 1.0 (MiniCAM)
- Biomass Supply
 Residue & Biocrops
- **Biomass** Demand

Direct-End Use
Electric Generation
Feedstock

- **USA Biomass Projections**
- **+Conclusions**

The ObjECTS Framework

The Object-oriented Energy, Climate, and Technology Systems (O^{bj}ECTS) Framework uses a modular, data-driven architecture to model energy (and soon agricultural) systems.

- → Implemented in C++
- * eXtensible Markup Language (XML) data structures
- Arbitrary number of sectors and technologies
- + Enables detail where needed
- ◆ Input data determines the market structure, sector definitions, fuels, and linkages.
- ObjECTS 1.0 implements the MiniCAM model
 Same partial-equilibrium equation structure
 Substantially more flexibility in structure of the energy system

The ObjECTS Framework

ObjECTS 1.0 Structure

The definition of "the" model is determined by the data more than the code.

1990 Energy System Structure

Data Determines:

Sectors Linkages

Implemented for 14 World Regions

Biomass Supply

Two sources of biomass:

* Residue Streams

Wood chips, ag residues, urban wastes, etc.

Currently represented by aggregate, regional supply curve derived from EIA data (disaggregation planned)

Biomass Crops

Composite biomass crop (disaggregation planned)

Produced by Agriculture & Land-Use Model (AgLU)

Regional or global biomass or biomass product markets can be configured

Agriculture and Land-Use (AgLU) Model

AgLU Characteristics (Sands and Leimbach 2003)

+ Design

Top down

Partial equilibrium

Land Allocation

Land owners compare economic returns across crops, biomass, pasture, and future trees

Underlying probability distribution of yields per hectare

Forest Dynamics

Trees in AgLU grow for 45 years

Two forest markets (current and future) needed for model stability

Status

Current procedural (FORTRAN) version is being converted to object-oriented architecture.

Agriculture and Land-Use Land Allocation

Biomass Demand

Biomass can be used in a number of ways

Direct-End Uses

Industry heat (pulp&paper), buildings (traditional biomass, wood stoves)

+ Electric Generation

Co-firing or dedicated plants

+ Feedstock

Ethanol

BioDiesel (in progress)

Hydrogen

Syn Gas

Currently examining the appropriate disaggregation of biomass supply, transformation, and end use technologies.

ObjECTS 1.0 with ethanol

Model structure with refined liquids sectors and explicit ethanol production and use.

Illustrative Results: Ethanol Assumptions

Two sets of cases:

- 1) 100% ethanol vehicles are only available at a higher cost (which could be an opportunity cost), limiting them to niche markets.
- 2) 100% ethanol vehicles are available at only a slightly higher cost than gasoline-fueled vehicles.

This would require a dual-fuel infrastructure.

Ethanol production is assumed to occur via cellulosic conversion technologies

Current corn->ethanol conversion, and its tax subsidy not included.

Conservative case -- conversion cost is assumed to decline substantially, but still above current gasoline refining cost by 2100

PNNL 12

Illustrative Results

UMd

Biomass Use (USA) Reference Case (few Ethanol Vehicles)

The Joint Global Change Research Institute

Biomass Use (USA) WRE 550 (few Ethanol Vehicles)

In a stabilization case, if ethanol vehicles are not available at a cost similar to gasoline cars, then most biomass is used to generate H2 (assuming a demand exists) and electric ²⁰⁹⁵ generation

Biomass Use (USA) Reference Case (Ethanol Vehicles)

With 100% ethanol vehicles available, most biomass is used to make ethanol.

Biomass Use (USA) WRE 550 (Ethanol Vehicles)

Under a carbon policy biomass consumption, and ethanol use in particular, increases substantially.

Most transportation is still powered by fossil fuels – even in a carbon policy case. Is such a system feasible or desirable? Is H₂ a better option?

Conclusions

- Biomass can be a significant contributor to the US energy system

 If a demand for biofuels exists, then biomass is used preferentially as a feedstock, although other uses (co-firing, etc.) will still use biomass.
- Technology availability is a key assumption

The availability of end-use demands and associated infrastructure are key assumptions that determine how biomass is used.

Ethanol has significant potential

If transportation demand exists (dual-fuel vehicles, etc.), ethanol could supply a large fraction of transportation demand by the end of the century

Supply issues are very important

The total potential for biomass production is a key determinant of the future role of biomass, and the **key** determinant of total biomass use in a carbon policy scenario.

Work In Progress!

We will be further developing our biomass representation over the next few months and detailed results will likely change.